236 research outputs found

    MODELLING THE INFLUENCE OF NUCLEUS ELASTICITY ON CELL INVASION IN FIBER NETWORKS AND MICROCHANNELS

    Get PDF
    Cell migration in highly constrained extracellular matrices is exploited in scaffold-based tissue engineering and is fundamental in a wide variety of physiological and pathological phenomena, among others in cancer invasion and development. Research into the critical processes involved in cell migration has mainly focused on cell adhesion and proteolytic degradation of the external environment. However, rising evidence has recently shown that a number of cell-derived biophysical and mechanical parameters, among others nucleus stiffness and cell deformability, plays a major role in cell motility, especially in the ameboid-like migration mode in 3D confined tissue structures. We here present an extended cellular Potts model (CPM) first used to simulate a micro-fabricated migration chip, which tests the active invasive behavior of cancer cells into narrow channels. As distinct features of our approach, cells are modeled as compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the migration chamber is composed of channels of different widths. We find that cell motile phenotype and velocity in open spaces (i.e., 2D flat surfaces or large channels) are not significantly influenced by cell elastic properties. On the contrary, the migratory behavior of cells within subcellular and subnuclear structures strongly relies on the deformability of the cytosol and of the nuclear cluster, respectively. Further, we characterize two migration dynamics: a stepwise way, characterized by fluctuations in cell length, within channels smaller than nucleus dimensions and a smooth sliding (i.e., maintaining constant cell length) behavior within channels larger than the nuclear cluster. These resulting observations are then extended looking at cell migration in an artificial fiber network, which mimics cell invasion in a 3D extracellular matrix. In particular, in this case, we analyze the effect of variations in elasticity of the nucleus on cell movement. In order to summarize, with our simulated migration assays, we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the cytoskeletal and nuclear elastic characteristics correlate with the tumor cell's invasive potentia

    Modelling the motion of a cell population in the extracellular matrix

    Get PDF
    The paper aims at describing the motion of cells in fibrous tissues taking into account of the interaction with the network fibers and among cells, of chemotaxis, and of contact guidance from network fibers. Both a kinetic model and its continuum limit are described

    Modeling cell movement in anisotropic and heterogeneous network tissues

    Get PDF
    Cell motion and interaction with the extracellular matrix is studied deriving a kinetic model and considering its diffusive limit. The model takes into account of chemotactic and haptotactic effects, and obtains friction as a result of the interactions between cells and between cells and the fibrous environment. The evolution depends on the fibre distribution, as cells preferentially move along the fibre direction and tend to cleave and remodel the extracellular matrix when their direction of motion is not aligned with the fibre direction. Simulations are performed to describe the behavior of ensemble of cells under the action of a chemotactic field and in presence of heterogeneous and anisotropic fibre networks

    A Multiphase First Order Model for Non-Equilibrium Sand Erosion, Transport and Sedimentation

    Get PDF
    Three phenomena are involved in sand movement: erosion, wind transport, and sedimentation. This paper presents a comprehensive easy-to-use multiphase model that include all three aspects with a particular attention to situations in which erosion due to wind shear and sedimentation due to gravity are not in equilibrium. The interest is related to the fact that these are the situations leading to a change of profile of the sand bed

    On the stability of homogeneous solutions to some aggregation models

    Get PDF
    Vasculogenesis, i.e. self-assembly of endothelial cells leading to capillary network formation, has been the object of many experimental investigations in recent years, due to its relevance both in physiological and in pathological conditions. We performed a detailed linear stability analysis of two models of in vitro vasculogenesis, with the aim of checking their potential for structure formation starting from initial data representing a continuum cell monolayer. The first model turns out to be unstable at low cell densities, while pressure stabilizes it at high densities. The second model is instead stable at low cell densities. Detailed information about the instability regions and the structure of the critical wave numbers are obtained in several interesting limiting cases. We expect that altogether, this information will be useful for further comparisons of the two models with experiments

    Multiscale developments of cellular Potts models

    Get PDF
    Multiscale problems are ubiquitous and fundamental in all biological phenomena that emerge naturally from the complex interaction of processes which occur at various levels. A number of both discrete and continuous mathematical models and methods have been developed to address such an intricate network of organization. One of the most suitable individual cell-based model for this purpose is the well-known cellular Potts model (CPM). The CPM is a discrete, lattice-based, flexible technique that is able to accurately identify and describe the phenomenological mechanisms which are responsible for innumerable biological (and nonbiological) phenomena. In this work, we first give a brief overview of its biophysical basis and discuss its main limitations. We then propose some innovative extensions, focusing on ways of integrating the basic mesoscopic CPM with accurate continuous models of microscopic dynamics of individuals. The aim is to create a multiscale hybrid framework that is able to deal with the typical multilevel organization of biological development, where the behavior of the simulated individuals is realistically driven by their internal state. Our CPM extensions are then tested with sample applications that show a qualitative and quantitative agreement with experimental data. Finally, we conclude by discussing further possible developments of the metho

    A nonlinear elastic description of cell preferential orientations over a stretched substrate

    Get PDF
    The active response of cells to mechanical cues due to their interaction with the environment has been of increasing interest, since it is involved in many physiological phenomena, pathologies, and in tissue engineering. In particular, several experiments have shown that, if a substrate with overlying cells is cyclically stretched, they will reorient to reach a well-defined angle between their major axis and the main stretching direction. Recent experimental findings, also supported by a linear elastic model, indicated that the minimization of an elastic energy might drive this reorientation process. Motivated by the fact that a similar behaviour is observed even for high strains, in this paper we address the problem in the framework of finite elasticity, in order to study the presence of nonlinear effects. We find that, for a very large class of constitutive orthotropic models and with very general assumptions, there is a single linear relationship between a parameter describing the biaxial deformation and cos^(2) theta(eq), where theta(eq) is the orientation angle of the cell, with the slope of the line depending on a specific combination of four parameters that characterize the nonlinear constitutive equation. We also study the effect of introducing a further dependence of the energy on the anisotropic invariants related to the square of the Cauchy-Green strain tensor. This leads to departures from the linear relationship mentioned above, that are again critically compared with experimental data
    corecore